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cascade. However, if the excited nucleus rotates, any 
preferential location of "hot spots," say in the forward 
hemisphere, will be lost before decay. For a value of 
/ = 10, the time to rotate 180° is «3X lO"20 sec and this 
is then the order of an upper limit for the fragmentation 
process. 

We feel that the mechanism for fragmentation pro­
posed by Wolfgang et al. is basically in agreement with 
the present observations. Fragmentation occurs during 
or shortly after the development of the nuclear cascade 
and before equipartition of energy is established. The 
fragments arise from regions of the nucleus which are 
highly disturbed ("hot spots"). The present experiment 
indicates that these excited regions are more concen­
trated in the forward hemisphere of the nucleus. The 
energies of most of the fragments are less than Coulom-
bic, which may indicate large deviations from spherical 
shape at the moment of fragment formation. 

We agree with Crespo et al} that meson production, 
scattering, and reabsorption are not necessary for frag­
mentation and that Wolfgang et al.1 may have over­
emphasized their role. Meson production, scattering and 
reabsorption in proton induced cascades will certainly 
increase the probability for the creation of highly dis­
turbed regions and subsequent fragmentation. So also 
may bombardment with the correlated nucleons in an 
alpha particle as was observed by Crespo et al. 

ACKNOWLEDGMENTS 

The authors wish to thank Miss E. Norton for per­
forming the chemical yield analyses and R. Withnell 
for target preparation. We are indebted to Dr. J. 
Alexander, Dr. G. Friedlander, Dr. J. R. Grover, Dr. S. 
KatcofT, Dr. M. L. Perlman, Dr. N. Sugarman, and 
Dr. A. Turkevich for many interesting discussions of 
our results and conclusions. 

P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 11 13 A P R I L 1 9 6 4 

Pseudoscalar Charge Density of Spin-! Particles. I. Existence* 

K. HlIDAf 

Argonne National Laboratory, Argonne, Illinois 
(Received 4 November 1963) 

When interactions are renormalizable and are invariant under time reversal but not invariant under space 
reflection, then under the requirement that the S matrix is free from divergences after renormalization 
it is shown that any spin-J particle with nonvanishing mass should have pseudoscalar charge density in 
addition to the usual scalar charge density. Unrenormalizable interactions are also discussed as possible 
sources of the pseudoscalar charge density. Arguments are given for the observability of the pseudoscalar 
charge density. 

1. INTRODUCTION AND DERIVATION OF THE 
PSEUDOSCALAR CHARGE DENSITY 

THE purpose of this work is to study the electro­
magnetic properties spin-J particles possess as a 

result of parity-nonconserving but time-reversal 
invariant interactions. The purpose of this section is 
to show that any charged spin-| particle has pseudo-
scalar charge density in addition to usual scalar charge 
density as a result of the parity-nonconserving inter­
actions. To show this, let us consider the Lagrangian 
density 

- r d 

L = L1+L2, Lx= - : yp{%)\ 7^ Mo 
L dXu 

\*(x): (1.1) 

for a spin-J field \f/ in the Heisenberg representation, 
where the notation : X: means to take the normal 
product of the operators included in X, ^* is the 
Hermitian conjugate of \p, ^=^*/3, and y^ is a 4X4 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f On leave of absence from the Research Institute for Funda­
mental Physics, Kyoto University, Kyoto, Japan. 

Hermitian matrix and satisfies the commutation 
relation 

{7^7^ = 28^. (1.2) 

The interaction Lagrangian density Li is always 
assumed to be invariant under time reversal. To prove 
unambiguously that the pseudoscalar charge density 
exists, Li is assumed (for the moment) to include only 
renormalizable interactions. 

The next step is to renormalize the wave function \f/ 
for the free dressed particle with moment p interacting 
with its self-field as 

^(p) = Z^I(p), (1.3) 

where \j/i represents the wave function in interaction 
representation and the c number Z2 is a positive definite 
constant. Since the term faf/bid/Ox^x// is invariant 
under time reversal but the term \py$p is not, the former 
term as well as the self-energy term \[np should be 
induced by the self-interaction of any spin-J particle 
with finite mass, where y$2= 1. To renormalize as (1.3) 
shows, therefore, both the parity-nonconserving counter 
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term i/yftsid/dx^yp and the self-energy counter term 
\fy should be added to the free part of the Lagrangian 
density L\ and the same terms should be subtracted 
from the interaction Lagrangian density L2} 

Then our starting Lagrangian density has the form 

L0= - : 0 ( * ) | I V — + m \p(x):, (1.4) 
L 8%^ J 

a _ d 
L' = L2+dni:4>(x)\l'(x): -\ : # ( S ) Y M Y 6 — l K & ) ' , 

( l _ a 2 ) i / 2 dXfi 

where a is a real constant by the requirement that~L2 

is invariant under time reversal, and a?<l by the 
requirements that the free dressed particle has a 
nonvanishing mass and it cannot propagate in vacuum 

where p1(x
2)=5(x2—ni2)+(Ti(x2). 

As was the case when the two counter terms (the 
self-energy and the parity-nonconserving counter 
terms) were introduced, the renormalized S matrix 
is a function of a, which is bounded by the condition 
(1.10). Thus the S matrix is free from divergences. In 
this paper it will be shown that a is related to the 

1 K. Hiida, Phys. Rev. 132, 1239 (1963). Hereafter this article 
will be cited as I. 

2 As was shown by Eq. (18) of I, 

Using the inequality <n—aps>0 leads to 1>Z 2 >0 . 

faster than the velocity of light. The definition of TM 

in Lo is 
r M = T , ( i + « 7 6 ) / ( i - « 2 ) 1 / 2 , (1.5) 

which satisfies a commutation relation of the same form 
as Eq. (1.2) for 7M: 

{rM,r,} = 26^. (1.6) 

I t should be noted that the definition of $ in LQ is still 
^*/3, not ^*/?(l+0Y5)(l—a2)~1/2, because the term 7^75 
in TM comes from the self-interaction. When the defini­
tion ^=^*/3(l+a76)(l—a2) '1 1 2 is incorrectly used 
instead, the Lagrangian density Lo is not a Hermitian 
operator and it cannot be the free part of the Lagrangian 
density L. 

From the Lagrangian density (1.4), the unrenormal-
ized modified propagator of the spin-J particle with 
nonvanishing mass is given [Eq. (15) of I ] by 

pseudoscalar charge density of any spin-| particle with 
nonvanishing mass, and it may be an observable. When 
the parity-nonconserving counter term is not intro­
duced, as will be shown in the next section, the S matrix 
is not free from divergences even after the renormaliza-
tion. Thus, it is necessary to introduce the parity-
nonconserving counter term. 

The reader may doubt the consistency between the 
two statements: (1) When the two counter terms are 
introduced, the renormalized S matrix is a function of 
a and the matrix is divergence free. (2) When only 
the self-energy counter term is introduced, the S 
matrix is not free from divergences even after the 

f a2m r°° } f a r00 1 
5 / ( # ) = * - & » +Z / dx2Z(m-x)a1(x

2)+P2(x
2)2 \SF

2(p)+\ +Z / dx2
Pz(x

2) \SF(p)(T-p)y^F(p) 
I 1 — a2 Jo J 11 — a2 Jo J 

f a2 f ° ] f00 (ir^p-x)a1(x
2)+p2(x

i)+i(r'P)y5pz(x
2) 

+ 1 z dx2o-1(x
2)\SF(p)-iZ dx2 , (1.7) 

l 1 — a2 Jo ' Jo p2+x2—ie 

where SF(p) = i/(iT -p+m), spectral functions ah p2, and p3 do not include the 5(x2—m2) function, and Z is a real 
constant. The integrals Jo*dx2ai(x2), fo°dx2(l/x)p2(x2), and Jo°dx2pd(x

2) diverge logarithmically in perturbation 
calculations. To determine the renormalization constants 8my a, and Z2, we shall use the requirement (1.3) and the 
relation 

SF'(p)=Z2SFtVe' (p)} (1.8) 

where SFtTe(p) is the renormalized modified propagator. 
Then the renormalization constant Z2 for the wave function is expressed as 

Z 2 - 1 = C ( l - a 2 ) / ( l - 3 a 2 ) , (1.9) 

where C ^ 1. By the definition (1.3), Z2 should have the meaning of a probability.2 This means that 

a2^h (1.10) 

The renormalized modified propagator SF,re'(p) can be expressed in terms of three spectral functions in the form 

/•* (iT'p-x)p1(^)+p2(x
2)+i(T'P)y6pz(x

2) 
SF^(p) = - i dx2 , (1.11) 

Jo p2+x2—ie 
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renormalization. In the former case, the constant a is 
expressed as 

1 - 1 + 4 
r- /.oo - | 2 - | l / 2 

\zA dx*Pz{x>)\ 

IzA da?p»(a?)*| 
-, (1.12) 

that is, the constant a is a function of Z2Jlccdx2pz{x2). 
In perturbation calculations, Z2

-1 and the integral 
fo dx2pz{x2) diverge logarithmically. Thus, there is a 
possibility that Z2S^dx2pz(x2) remains finite. In fact, 
the condition (1.10) requires 

Z2 I dx2pd(x
2) ^ V 3 . 

In the latter case, as will be shown in the next section, 
the renormalized S matrix is a function of the divergent 
integral jQ°°dx2pz(x2), not of the convergent integral 
Z2Jlcodx2pz(x2). Thus there is no inconsistency between 
the two statements. 

Because of the gauge invariance of the theory, even 
if parity is not conserved, the differential operator 
—d/dpn is the operator to insert a photon vertex 
without momentum transfer into the part of a Feynman 
diagram that represents the propagation of any charged 
particle. Consequently, the Ward identity3 

Z\=Z2 

holds, where Z\ is the renormalization constant for the 
photon vertex of any charged spin-J particle. The 
renormalized photon vertex without momentum transfer 
on the mass shell for any charged spin-J particle is 
given by 

h(P)SF-\p{ sF,xi{p)\sF-\p)^p) 
L dpa J 

=h(p)TMp)- (1-13) 

This equation means that the charge density of a free 
charged spin-J particle is given by 

p(x) = e: ^r* (x) _J<i (s):, 
( l -o 2 ) 1/2 

(1.14) 

which consists of the scalar part (1 — a2)~1/2 and the 
pseudoscalar part ay&(l—a2)-1/2. We shall call the 
pseudoscalar part ej/*ayz(l—a2)~1/2\p the "pseudo-
scalar charge density." 

It should be stressed that the pseudoscalar charge 
density is not arbitrarily introduced in this theory but 
is induced by parity-nonconserving interactions and, 
as will be discussed in Sec. 4, the constant a may be an 
observable when the charged particle is not free. The 
independent of a. From Eq. (A9) of I, the total charge 

» J. C. Ward, Phys. Rev. 78, 182 (1950). 

of a charged spin-§ particle is given by 

d*xp(x) = e£ [ d*k{a*(k)a,(k)-b»*(k)b»(k)}, )= / dzxp(x) = eY, I 

where £M denotes the summation over all possible spin 
states, and a^* and #M* are the particle and antiparticle 
creation operators, respectively. 

At the end of Sec. 2, unrenormalizable interactions as 
the source of the pseudoscalar charge density are also 
discussed. The most general form of the photon vertex 
on the mass shell for any spin-§ particle with non-
vanishing mass is given in Sec. 3. This form shows that a 
neutral spin-J particle with nonvanishing mass also 
should have the pseudoscalar charge density. In order 
to help to understand our renormalization method and 
the origin of the pseudoscalar charge density, an 
example is also discussed in Sec. 3. Section 4 is devoted 
to a discussion of the observability of the pseudo-
scalar charge density. 

2. ON THE UNIQUENESS OF THE EXISTENCE OF 
THE PSEUDOSCALAR CHARGE DENSITY 

In Sec. 1 it was argued that when both the self-
energy and the parity-nonconserving counter terms are 
introduced, the renormalized S matrix is free from 
divergences and, as the direct consequence of intro­
ducing the latter counter term, any charged spin-J 
particle should have pseudoscalar charge density in 
addition to the usual scalar charge density. The 
purpose of this section is to show that when only the 
self-energy counter term is introduced, the S matrix 
is not free from divergences even after the re­
normalization. 

To show this we shall start from the partially 
renormalized modified propagator 

/.OO 

SF,J(P)= / dx>Ps(x>)SF{p)(TphiSF(p) 

Jo 
i I dx2-

(iyp—x)p! (x2)+p2 (x
2)+i (7 • p)y5pz CO 

p2+x2—ie 
(2.1) 

which is obtained from Eq. (1.7) by taking a=0, 
Z=Z2, 8m=Zf2

(X>dx2l(m-x)ai(x2)+p2(x2)'], and Z2~
l 

= Joccdx2pi(x2). When 0=0, the expression (1.7) 
includes two constants, dm and Z, and three divergent 
integrals, JoGOdx2[(tn—x)(ri(x2)+p2(x2)~], Jo°dx2pz(x2), 
and Jo^dx^iix2), which have coefficients with different 
transformation properties. Therefore, at least one 
divergent integral remains in the renormalized modified 
propagator SF,™' even after determining the magni­
tudes of the constants properly. We have so renormal­
ized in Eq. (2.1) that, when parity is conserved, the 
present renormalization method coincides with Dyson's 
prescription.4 When we want to renormalize such that 

4F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949). 
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the divergent term Jox>dx2pz(x2) disappears from Eq. 
(2.1), the renormalized S matrix is not free from the 
divergences which appear in the usual mass or charge 
renormalization. 

If the divergent integral Jlcodx2pz(x2) in (2.1) is 
harmless for all renormalized S-matrix elements, we 
cannot reject the above renormalization prescription. 
We shall show such harmless examples. Differentiating 
SF,TJ(P) with respect to p^ p^p?, etc., yields the exact 
matrix elements describing the interactions of a 
charged spin-J particle with zero-momentum photons. 
The results are 

hWSp-1^ sFtVe'(p)]sF-Kp)fr(P) 

^faiphi&iip), 

h{p)sF-KP)\ sF^{p)\sF-Kp)Mp) 
ldpu di)v J 

c 

dpp dpv 

=h(p)[y»SF(p)yv+yvSF(p)yMp), (2.2) 

free from the divergent integral as shown in Eq. (2.2), 
our derivation of the pseudoscalar charge density is 
not unique. In the following, as an example, we shall 
show that the ^-matrix element for a y—ir° process is 
not free from the divergent integral. 

Because of our assumption of time-reversal in-
variance, the most general form of the renormalized 
meson-vertex operator T&(php2) is 

(iypi—iyp2) 
r6(#i,#2) = 76 / i+ /* 

m 
1 

-\ [(£y- £1+^)75+75(^7- P2+^)]/3 
2m 

1 
H—(iy-pi+nihb(iy-p2+m)f<i, (2.3) 

m2 

where /,• (i= 1, 2, 3, and 4) are functions of pi2, p2
2, and 

q2= (P1-P2)2, and 

fi(pi2=-'.n\ p22=-m2, q2=0)=l. (2.4) 

etc. In these examples, the divergent integral Jo*dx2pz(x2) 
appearing in Eq. (2.1) does not contribute to the results, 
and the pseudoscalar charge density derived in Sec. 1 
also disappears. This is the direct consequence of the 
gauge invariance of the theory. Recently, Carhart5 

calculated the radiative correction to the photon-
electron vertex in the lowest order of the weak-coupling 
constant, and showed that the divergent integral does 
not contribute to the photon-electron vertex in the 
lowest order. If all other 5-matrix elements also are 

When the parity-nonconserving counter term is intro­
duced, 7 matrices in Eq. (2.3) should be replaced by 
T's and all scalar functions fi are divergence free. 
When it is not introduced, on the other hand, these 
functions may include divergences. 

Now we shall calculate the S-matrix element for the 
7—7T° process y+x—>ir°+x, where x is a charged 
spin- | particle on the mass shell, the momentum of the 
photon is equal to zero, and the neutral pion is in a 
virtual state. The matrix element is given by 

h{pl)SF-l{plA~( + )SF,r:{pl)Yh{php2)SFAp2) \SF-1(P2)MP2) 
L \<tyiM dp2/ J 

= h(pi)\\fi-2f2(f ^2p3^2))-i(/i+2/3+4/4)(f dx2
Pz(x

2)^ 'Yy,SF(p1)y,+y&SF(p2)y,2 

+ 2 [ A " ^ ( / ^2P3(*2))](J ^W*2)) DY/xY&SV ( £ I ) 7 B + 7 5 ^ F (£2)7M7S] 

+ C / I + / S ] ( f dx2p,{x2)\ ly»y£F{p,)+SF{p2)ya^i{p*). (2.5) 

Since the right-hand side of Eq. (2.5) consists of three terms whose transformation properties differ from one 
another, the matrix element is divergence free when and only when each term is divergence free. Perturbation 
calculation shows that, for example, C/1+/3) is not identically zero. Thus it is necessary to introduce the parity-
nonconserving counter term, and consequently the existence of the pseudoscalar charge density is proved under the 
requirement that the renormalized 5* matrix is free from divergences. 

Equation (2.5) was obtained by introducing the self-energy counter term alone, and the scattering matrix 
diverges because it includes the divergent integral JTdx2pz(x2). On the other hand, when both the self-energy and 
the parity-nonconserving counter terms are introduced, the renormalized 5 matrix is free from the divergence. 

6 R. A. Carhart (unpublished). 
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hipdSp-Kpdl -(- + )SF,re'(pl)T!l(Pl,P2)SF,Ie'(p2)']sF-Kp2)4'l(p2) 
L W i „ dp2J J 

= / i ( - » J , - »* , g2)^(/'i)[r^(^1)T5+7^F(^2)r(1>r(^), (2.6) 

In fact, the matrix element in Eq. (2.5) is also given by 

which is free from the divergent integral Jlccdx2pz(x2), 
because the constant a in T^ is a function of the finite 
integral Z2jlccdx2pz(x

2)y not of the divergent integral. 
Thus, it follows that the two statements mentioned in 
the previous section are not inconsistent. 

So far we have considered only renormalizable 
interactions. However, weak interactions that are not 
invariant under space reflection are unrenormalizable. 
The interaction Lagrangian or Hamiltonian used 
customarily to describe weak decay phenomena is a 
phenomenological one; and when it is used to calculate 
radiative corrections, there is no consistent method of 
removing all divergences from observed quantities. 
However observed quantities should be finite and 
future developments should lead to a consistent theory 
in which all observed quantities are free from diver­
gences. Since we are far from this goal at the present 
moment, we shall introduce a phenomenological cutoff 
momentum A to get finite results. When the cutoff 
momentum is introduced, all quantities appearing in 
our theory are finite but renormalization is still neces­
sary whenever we start from a bare-particle state. Even 
in this case it is reasonable to require again the re-
normalization condition (1.3). When this condition is 
required, the existence of the pseudoscalar charge 
density is evident. People believe that the K-^—K^ 
mass difference could be explained by weak unrenormal­
izable interactions between Ki° and K£ and their 
self-fields. Likewise it is reasonable to believe that weak 
unrenormalizable interactions are once of the sources 
of the pseudoscalar charge density. 

3. PHOTON VERTEX ON THE MASS SHELL 

We want to get the most general form for the photon 
vertex of both neutral and charged spin-J particles 
with finite mass on their mass shells. Under the require­
ments of covariance and time-reversal invariance the 
photon vertex is expressed as 

=i4i(Pi) {r»fi(q2)+— pM) 
I 2m 

+r^Mq2)+-q^Mq2) W * ) , (3.1) 
m J 

where p=(pi+p2), q=(pi—p2), and the four form 
factors fi are all real when q is a space-like vector. The 

identity 

tyiipitppfaipi) = faiPdlvppqw— 2mYi^I{p2), 

where 

can be used to re-express the first two terms in (3.1) as 

i4i(pi) ( r»Fi(q2)+— WW) U r f o ) , (3.2) 
1 2m J 

where Fi=fi— /2 and F2=/2. The expression (3.2) is 
gauge invariant. The renormalization condition, Eq. 
(1.13), for the photon vertex leads to the conditions 

Fi(0)— 1 for charged particles, (3,3) 
— 0 for neutral particles, 

and 
Mq2)=(q2/m2)Fs(q

2), 

where 1Fz(0) | < <*>. The Dirac equation for $i(pi) and 
^i(p2) leads to 

1 
ifa(pi)qnyf&i(p*)=—faipi) ( r • q)q^y^i(p2). 

2m 

Therefore the last two terms in (3.1) are re-expressed as 

ie 
-h(pi){q2rMq2)+(r-q)qMq2)}yt>fr(p2), 
m2 

which is gauge invariant only when f4(q2)=—Fz(q2). 
This brings us to the gauge invariant and renormalized 
photon vertex 
fipdJuiPhPiMp*) 

= iefo(pi) TfiF1(q
2)+—alivqyF2(q

2) 
I 2m 

+—[flTM- (r• q)q^Fz(q
2) L f o ) . (3.4) 

m2 J 

A very similar expression for the photon vertex was 
obtained by ZeFdovich and Perelomov.6 The difference 
between their expression and our expression (3.4) is 
that the later satisfies Eq. (1.13) but their expression 

6Ya. B. ZeFdovich and A. M. Perelomov, Zh. Eksperim. i 
Teor. Fiz. 39,115 (1960) [English transl.: Soviet Phys.—JETP 12, 
777(1961)]. 
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satisfies Eq. (2.2) when the transferred momentum q 
is equal to zero. When renormalizable interactions are 
considered, according to their definition of the photon 
vertex, the 5 matrix is not free from divergences. The 
first term in Eq. (3.4) consists of the vector current 
$yn(l—a2)~1,2Fi\f/ and the induced pseudovector current 
^#YMY5(1—a2)~ll2Fi\l/, which are related to the scalar 
charge density and the induced pseudoscalar charge 
density, respectively. The second and the third terms 
in Eq. (3.4) are related to the anomalous magnetic 
moment and the anapole moment.7 I t is evident from 

Eq. (3.4) that neutral spin-! particles also have the 
pseudoscalar charge density. 

The parity-nonconserving counter term includes the 
operator (d/dx^). For charged spin-J particles, there­
fore, the parity-nonconserving counter term should be 
introduced in a gauge-invariant way. As an example, 
consider the system which involves the electron field \f/, 
the photon field Am the electron-neutrino field \pp, and a 
charged vector-meson field <£M interacting with \f/ and \pv. 
The gauge-invariant Lagrangian density of the system 
is given by 

S / d \ -l /dAw\/dA,\ . (1+76) d 
L=-:xf/\ r j ieoAA+m M: - § : ( )( J: - : i/vyM ^ , : 

L sdXp / J \ d # M / \ d # M / 2 dx^ 

r „ ( 1 + 7 B ) _ (1+75) I 
- Ci: G^G^ :+M2: Qffa: +ieon: F^ffa : ] + i d H^ $v+Yirii4>* ^ 

+5m:#: +a(l-a)~l/2 i^y / ieoAAf,: +5M 2 : <^*0M:, (3.5) 
\dXa / 

where 

YdAv a i A / d \ / d \ 
r M = 7 M ( l + a 7 5 ) ( l —a2) -172, Fllv=l ) , G>.= ( ieoAp) m— ( ieoAvm-

KdXp dxv/ \dXp / \dxv / 

fx is the anomalous magnetic moment of the vector meson in units of the vector-meson magneton, eo is the bare 
coupling constant for photon interactions, and m and M are the masses of the electron and the vector meson, 
respectively. 

We shall explain our renormalization method for the photon vertex of the electron. For convenience sake, the 
diagrams representing the photon vertex of the electron are divided into two classes: (1) diagrams in the order 
eo2ngQ for the radiative corrections to the vertex part and the external electron lines, and (2) diagrams in the order 
eQ2ng2(m+i) a n ( j e^ng2ma{i+i) for f^ r a cjiative corrections, where /, m, and n are positive integers including zero. As 
we know, the contribution from all diagrams that belong to the former class satisfies the renormalization condition 
(1.13). The constant a is already determined by Eq. (1.12) in terms of spectral functions appearing in the renor-
malized modified propagator SF,re(p) of the electron. From this value of a, it follows that the contribution from 
all diagrams that belong to the latter class is equal to zero when the momentum transfer q is equal to zero. This 
is the direct consequence of the gauge invariance of our Lagrangian (3.5). 

Since the coupling constants e2 and g2 are very small, we shall consider only the order eg2 for the diagrams belonging 
to the latter class. Then the possible diagrams are those shown in Fig. 1. We want to calculate the contribution 
from these diagrams to the parity-nonconserving part of the first term, and the second and the third terms in 
Eq. (3.4). The diagrams (c), (d), (e), and (f) contribute only to the wave-function renormalization constant of the 

FIG. 1. Diagrams representing the photon vertex of the electron 
in the order eg2 or ea. The full, dashed, wavy, and heavy lines 
denote the electron, the photon, the neutrino, and the vector 
meson, respectively. The circle on the electron line denotes the 
self-energy and the parity-nonconserving counter terms 
[—i8m+a(l~a2)~1/27'i>m], where pi and p2 denote the mo­
menta of the final and initial external electrons, respectively. 
The operators at each photon vertex are written explicitly in the 
diagrams. 

P-— 
(a) (b) 

el* 

erL n 

(d) (e) 

7 Ya. B. Zel'dovich, Zh. Eksperim. i Teor. Fiz. 33, 1531 (1957) [English transl.: Soviet Phys.—JETP 6, 1184 (1958)]. 
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electron. From the diagrams (a) and (b), one gets 

ig2 r 

2(2TT) 47 

X$(pi)\ 7/H (y'pi-y'k)(pi-k)p \(yk)\ ya-\ (yp2-yk)(p2-k)a ( 1 + 7 5 ) ^ 2 ) 
L M2 J L M2 J 

Xl(k2-2p1k+M2-m2-ie)(k2-ie)(k2-2p2k+M2- (3.6) 

where the a2 term is neglected. Since the k integration diverges quadratically, the cutoff factor of the type X2/ 
(p2+X2—ie) is introduced for each vector-meson propagator. Retaining only the most divergent parts, one obtains 

mg2 r 1 rx2 r] 

M;^ — / dUdLi 
(4ir)W* I 2 Jo Jo 

nf dlf 
Jo Jo 

/•X2 - 1 

— / dLidL2 I 
r9'Jo Jo 

x(l — x)dx 

lL1x+L2(l-x)+M2+x(l-x)q2-ieJ 

y(l—y)dxdy 
+ M / dL\ :—\^(pi)crtiVqvrp(p2) 

£L(l—y)+M2y—fn2y(l—y)-{-x(l — x)y2q2—ie2> 

x(l — x)dx i fx 
•Kpi) UTM Cg2TM-2ImgM] \y${p2) 

2(2T)*M*JO JO ZL1x+L2(l-x)+M2+x(l~x)q2-ie'] l 2M2 

Q2 /*̂ 2 f * xdx 
/ dLl 4'(p1){-2x(l-x)qiy^+Iml3-(l-2xy}qll}y^(p2) 

2(4x)W2;0 J»ZLx+iP+x(l-%)f-i6f 

y(l—y)dxdy 
1—1 dL • 

UTT)2M2JO JO\ (47r)2lf2 JO JO lL(l-y)+M2y-m2y(l-y)+x(l-x)y2q2-ie] 

Xlmq[i\p(p1)y^(p2)-a\p(p^yliy5\p(p2). (3.7) 

By comparing the second term in Eq. (3.4) with the first term in Eq. (3.7) and passing to the limit X2—» 00 f 

one finds 

g2 m2 rA2 1 (x2-4M2)1/2 

F2^(q2)~ ( 1 - M ) / dx2 , 
(47r)2Jkf2 JIM* q2+x2-ie x 

where the superscript (w) means that this expression sions are obtained by electromagnetic interaction to the 
is obtained by taking account only of weak interaction, order a, and (r2)21/2 denotes the root-mean-square 
Since this expression diverges, again the cutoff mo- radius of the anomalous magnetic moment of the 
mentum A was introduced. We get electron, which is just equal to the Compton wavelength 

of the electron to the order a. Using the value g2/M2 

F <»> (0)« g2 OfLtA _ \ 1 ^L. (2g\ ~ (2^12/MN
2) X10 - 5 , where MN is the nucleon mass, and 

2 (4?r)2 M2 RM2' ' assuming / z ~ l , one finds that the values of F2(0)(w,) 

given by Eq. (3.8) and of the second term in Eq. (3.9) 
On the other hand, to the order a^e2/4tir we get become comparable at 1/A~ 10~16 cm. 

From the remaining terms in Eq. (3.7), one finds in 
rw w ,N

 a /"* , . 1 m2 the limit X2-> 00 that 

T J^* q2+x2-ie x(x2-4m2)^2 M / - m o m e n t term 
which gives 

a am2 r l rA2 1 
F2(e.».)(0)« , (3.9) « - / dx2X(x2)-a WiPihtftKp*) 

2w 7T A2 L2Jn J 

1 , „ ^ i r M2 rA2 x2x($2) ^[^ x{%) 
dx2— — W 2 = - , (3.10) H — / dx2 — + 5 / 

m 6L2M2Jo q2+x2-ie Jo '0 q2+x2—ie Jo q2+x2—ie-

where the superscript (e.m.) means that these expres- X*/K^I)DZ27M"~7*<7<7/T]75^(£2), (3.11) 
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where 
g2 (x2-4M2Y'2 

X(x2) = 0(x2-AM2)— -. 
2(4TT)2M2 x 

The cutoff momentum A has again been introduced in 
expression (3.11). When the renormalization condition 
(1.13) is applied to the first term in Eq. (3.11), the 
constant a is found to be 

1 rA 2 g2 A2 

a « - / dx2X(x2)~ . (3.12) 
2 Jo ' (STT)2M2 

As was shown by Eq. (55) of I, this value of a coincides 
with that given by Eq. (1.12). From Eqs. (3.4) and 
(3.11), F3(0) is given by 

g2 m2 A2 5 g2 m2 A2 

Fg(0)« /* In—. (3.13) 
6(8TT)2 M2 M2 3 (8TT)2 M2 M2 

All our expressions for the electron also hold for the 
muon if m is the muon mass. 

4. OBSERVABILITY OF THE PSEUDOSCALAR 
CHARGE DENSITY 

We know the theorem8: Since two gamma matrices 
jp and Tft satisfy the same commutation relation, as 
was shown by Eqs. (1.2) and (1.6), there exists a 
nonsingular matrix S such that 

T^Sy.S-1 (4.1) 

and S is unique except for an arbitrary multiplicative 
factor. In our case S and its inverse are given by 

l2[l+(l-a*)1 / 2]J I ( l - a 2 H 
(4.2) 

- i f ^ - a 2 ) 1 / 2 }1/2f ( 1 + ^ ) 1 

l2[;i+(l —a2)1'2]! 1 (l-a2)1/2l 

On the basis of the Lagrangian density 

L0= - : +'(x)\y—+ni\'(x):, (4.3) 
L dXn J 

it follows that the transformation \f/—S\f/' leads to 

Lo= - : 0 (* ) [ r M —+m\(x ) : , (4.4) 
L dx^ J 

8 See, for example, J. M. Jauch and F. Rohrlich, The Theory of 
Photons and Electrons (Addison-Wesley Publishing Company, 
Inc., Reading, Massachusetts, 1955), p. 425. 

where ^=^*/3. The reader may raise the following 
objections. Since the Lagrangian density (4.3) clearly 
conserves parity, so does the Lagrangian density (4.4). 
Therefore, referring to the term [— a(l—a2)~~1/2^yM75 
X (d/dx^yf/] in the expression (4.4) as a parity-noncon-
serving term is misleading. Further demanding a2^\ 
is incorrect because the constant a in the expression 
(4.2) can have any value between 1 and —1. 

It is well known that two Lagrangian densities (4.3) 
and (4.4) with different representations of the Dirac 
gamma matrix describe the same free particle with 
spin J. As far as only the free spin-J particle is con­
cerned, the objection is valid. However, it was shown 
that the term [—a(l — a2)~ll2\pyl,yh{d/dXy)\l/~] is induced 
by parity-nonconserving self-interaction. Consequently, 
any charged spin-J particle should have an induced 
pseudoscalar charge density and a2 ̂  \ is obtained under 
the requirement that the wave-function renormalization 
constant Z2 should have the meaning of a probability.2 

That is, these results were obtained by considering the 
interaction of the spin-| particle with other fields; and 
these cannot be obtained by considering only the free 
particle without interaction— as can be seen from the 
Lagrangian densities (4.3) and (4.4). We may argue 
that the constant a should be an observable because it 
is finite and is uniquely determined by Eq. (1.12). One 
must be careful about the nonunitary nature of the 
transformation matrix S, i.e., of the fact that 

S*S=(l-ayz)/(l-a2y!2?*l for a^O. (4.5) 

Because of this nonunitary nature of S, the constant a 
may be an observable when the particle interacts with 
other fields, even though it has no physical meaning 
when the particle is free. 

In the next paper entitled "Pseudoscalar Charge 
Density of Spin-J Particles. II. Observability," we 
shall estimate the influence of the pseudoscalar charge 
density on the spin orientation of charged spin-| 
particles in electric and magnetic fields. For example, 
when an electron moves in a longitudinal electric field 
(electric field E is parallel to the momentum of the 
electron p), its spin rotates about the axis [pXM] by 
the interaction of the pseudoscalar charge density with 
the longitudinal electric field, where M is the spin vector 
of the electron. Thus, it is clearly shown that the 
pseudoscalar charge density is an observable. 
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